Effects of micronutrient supplementation and fortification interventions on the health and nutritional status of young children: a systematic review

Emily Keats, Jai Das, Zulfiqar A. Bhutta

Submitted to the Coordinating Group of:

- ☑ International Development
- ☑ Nutrition

Plans to co-register:

- ☑ Maybe

Date submitted:
Date revision submitted:
Approval date:
Effects of micronutrient supplementation and fortification interventions on the health and nutritional status of young children: a systematic review

Background

Malnutrition in childhood continues to be a pervasive problem in low- and middle-income countries (LMICs). In these settings, low consumption and poor quality and diversity of available foods mean that diets are not able to meet the nutrients required for rapid growth, making infants and children the most vulnerable group to micronutrient malnutrition. Globally, it is estimated that 42% of children under-five have anemia (Stevens, 2013) and 190 million (33%) preschool-aged children are deficient in vitamin A (WHO, 2009). Multiple deficiencies frequently occur simultaneously, and can be associated with negative physical, developmental, and cognitive consequences, increased mortality, and poor health and productivity later in life (WHO, 2001; Lozoff, 2007; Sanghvi, 2007; Black, 2008). Undernutrition, including deficiencies of essential vitamins and minerals, stunting, and wasting, is estimated to cause 45% of deaths in children under-five, resulting in 3.1 million deaths per year (Black, 2013).

Interventions to prevent and treat micronutrient malnutrition come in several forms, including the promotion of breastfeeding for infants and children up to two years of age, dietary diversification, biofortification of staple crops, fortification of complementary and staple foods, and the provision of micronutrient tablets or powders (Bhutta, 2008). While the potential benefits of each of these interventions have been well-established through proof-of-principle studies, implementation is not always successful due to programmatic barriers such as low compliance, lack of supply, and poor coverage.

This review aims to update the evidence that exists from trials as well as collate relevant data from evaluations of existing programmes for child undernutrition. As such, we will provide an overall assessment of the effectiveness of micronutrient supplementation and fortification interventions for improving child health and nutrition. This evidence will be critical to inform policy and programmatic decision-making in LMICs.

Objectives

1. What is the effectiveness of micronutrient interventions (single, multiple, micronutrient powders) on child health and nutritional status?
2. What is the effectiveness of lipid-based nutrient supplementation on child health and nutritional status?
3. What is the effectiveness of targeted or large-scale food fortification on child health and nutritional status?

Existing reviews

Objective 1: Micronutrient interventions

Objective 2: Lipid-based nutrient supplementation

Objective 3: Large-scale food fortification

Intervention

The following interventions will be included:

- Single micronutrient supplementation (iodine, iron, vitamin A, zinc, vitamin D)
- Multiple micronutrient supplementation
- Lipid-based nutrient supplementation
- Large-scale food fortification interventions (i.e. fortified staple foods and condiments)
- Targeted fortification for infants/young children (e.g. complementary foods, formula)
- Point of use fortification with micronutrient powders

Population

The target population is healthy children (i.e. non-diseased) from 1 month up to 5 years of age living in low- and middle-income countries (as defined by the World Bank). We will exclude antenatal maternal supplementation trials that have included newborn/child health outcomes (i.e. supplementation was not given to the child).

Outcomes

Primary outcomes:

- All-cause mortality
- Cause-specific mortality
 - Diarrhea
 - Meningitis
 - Measles
 - Acute lower respiratory infection, including pneumonia
 - Malaria
 - Other
- Nutritional status
 - Anemia prevalence
 - Stunting (-2 z-score or lower)
 - Wasting (-2 z-score or lower)
 - Underweight (-2 z-score or lower)
Secondary outcomes:

- Morbidity (as defined by study authors), including hospitalization
- Micronutrient deficiencies
 - Vitamin A (serum/plasma retinol)
 - Iron (serum/plasma ferritin, plasma TfR)
 - Serum/plasma folate
 - Serum/plasma zinc
 - Serum/plasma vitamin D
 - Hemoglobin concentration
- Growth
 - Height (cm or height-for-age z-score)
 - Weight (kg or weight-for-age z-score)
- Mental and motor skill development (as assessed by study authors e.g. Bayley Mental Development Index, Bayley Psychomotor Development Index, Stanford-Binet Test, DENVER II Developmental Screening Test)
- Adverse effects
 - Gastrointestinal (vomiting, diarrhea, stomach ache, constipation)
 - Irritability
 - Fever
 - Headache
 - Stained teeth
 - Bulging fontanelle
 - Kidney stones
 - Other

Study designs

We will include primary studies, including large-scale programme evaluations, which assess the efficacy and/or effectiveness of interventions using experimental and quasi-experimental study designs that allow for causal inference:

- Studies where participants were randomly assigned, individually or in clusters, to intervention and comparison groups.

- Studies where non-random assignment to intervention and comparison groups is based on other known allocation rules, including a threshold on a continuous variable (regression discontinuity designs) or exogenous geographical variation in the treatment allocation (natural experiments).

- Controlled before-after studies in which allocation to intervention and control groups was not made by study investigators, and outcomes were measured in both intervention and control groups at baseline, and appropriate methods were used to control for selection bias and confounding, such as statistical matching (e.g.,
propensity score matching, or covariate matching) or regression adjustment (e.g.,
difference-in-differences, instrumental variables).

- Interrupted time series (ITS) studies in which outcomes were measured in the
 intervention group at least three time points before the intervention was implemented
 and at least three time points after.

Evidence from efficacy trials and programme evaluations will be grouped and analysed
separately.

References

Black, R.E., Allen, L.H., Bhutta, Z.A., Caulfield, L.E., de Onis, M., Ezzati, M.,...,Rivera,
6736(07)61690-0.

Black, R.E., Victora, C.G., Walker, S.P., Bhutta, Z.A., Christian, P., de Onis,... Maternal and
http://dx.doi.org/10.1016/S0140-6736(13)60937-X.

Bhutta, Z.A., Ahmed, T., Black, R.E., Cousens, S., Dewey, K., Giugliani, E,... Maternal and
child undernutrition and survival. Lancet, 371(9610):417-440. doi: 10.1016/S0140-
6736(07)61693-6.

Sanghvi, T., Van Ameringen, M., Baker, J., Fiedler, J., Borwankar, R., Phillips, M,...Dary, O.
Year Strategy for the Reduction of Vitamin and Mineral Deficiencies. Food and Nutrition

Ezzati, M. (2013). Global, regional, and national trends in haemoglobin concentration
and prevalence of total and severe anaemia in children and pregnant and non-pregnant

WHO. (2009). Global Health Risks: Mortality and burden of disease attributable to selected
major risks. [Geneva]: World Health Organization.
pdf.

programme managers. [Geneva]: World Health Organization.
http://www.who.int/nutrition/publications/micronutrients/anaemia_iron_deficiency/
WHO_NHD_01.3/en/.
Review authors

Lead review author:

<table>
<thead>
<tr>
<th>Name</th>
<th>Emily C. Keats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Research Associate</td>
</tr>
<tr>
<td>Affiliation</td>
<td>Centre for Global Child Health, The Hospital for Sick Children</td>
</tr>
<tr>
<td>Address</td>
<td>686 Bay Street, 11th Floor</td>
</tr>
<tr>
<td>City, State, Province or County</td>
<td>Toronto, Ontario</td>
</tr>
<tr>
<td>Post code</td>
<td>M5G 0A4</td>
</tr>
<tr>
<td>Country</td>
<td>Canada</td>
</tr>
<tr>
<td>Phone</td>
<td>+1.416.813.7654</td>
</tr>
<tr>
<td>Email</td>
<td>emily.keats@sickkids.ca</td>
</tr>
</tbody>
</table>

Co-author:

<table>
<thead>
<tr>
<th>Name</th>
<th>Jai Das</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Affiliation</td>
<td>Department of Paediatrics and Child Health, Aga Khan University</td>
</tr>
<tr>
<td>Address</td>
<td>Stadium Road, PO Box 3500</td>
</tr>
<tr>
<td>City, State, Province or County</td>
<td>Karachi, Sindh</td>
</tr>
<tr>
<td>Post code</td>
<td>74800</td>
</tr>
<tr>
<td>Country</td>
<td>Pakistan</td>
</tr>
<tr>
<td>Phone</td>
<td>+92.21.3493.0051</td>
</tr>
<tr>
<td>Email</td>
<td>jai.das@aku.edu</td>
</tr>
</tbody>
</table>

Co-author:

<table>
<thead>
<tr>
<th>Name</th>
<th>Zulfiqar Bhutta Zulfiqar A. Bhutta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Co-Director, Director of Research</td>
</tr>
<tr>
<td>Affiliation</td>
<td>Centre for Global Child Health, The Hospital for Sick Children</td>
</tr>
<tr>
<td>Address</td>
<td>686 Bay Street, 11th Floor</td>
</tr>
<tr>
<td>City, State, Province or County</td>
<td>Toronto, Ontario</td>
</tr>
<tr>
<td>Post code</td>
<td>M5G 0A4</td>
</tr>
<tr>
<td>Country</td>
<td>Canada</td>
</tr>
<tr>
<td>Phone</td>
<td>+1.416.813.7654</td>
</tr>
<tr>
<td>Email</td>
<td>zulfiqar.bhutta@sickkids.ca</td>
</tr>
</tbody>
</table>
Roles and responsibilities

Emily Keats and Jai Das have methodological, statistical, and information retrieval expertise. Zulfiqar Bhutta has content expertise. All additional team members (to be determined) will receive training in systematic review methods.

Funding

Funding for this review came from a grant from the Bill & Melinda Gates Foundation to the Centre for Global Child Health at The Hospital for Sick Children (Grant No. OPP1137750).

Potential conflicts of interest

The authors are not aware of any conflicts of interest arising from financial or researcher interests.

Preliminary timeframe

- Date you plan to submit a draft protocol: 15 January 2018
- Date you plan to submit a draft review: 30 June 2018